

The Relationship Management Methodology

Dr. Daniel M. German Department of Computer Science

October 28, 2003 Version: 1.0.0

11-1 RMM (1.0.0)

Hypermedia is different from software development:

- Hypermedia/Web development involve people with very different skills
- Hypermedia involves capturing and organizing the structure of a complex domain and making it clear and accessible to users
- Native features of hypermedia that are not part of typical software (linking, presentation)

Hypermedia design is more an art than a science

Types of Applications

- The applications for which RMM is best suited exhibit a regular extructure:
 - Classes, relationships between classes, multiple instance objects for each class
- Volatile data that requires frequent updating
- RMM provides a framework for the design of such application

RMDM

- RMM defines a data model (RMDM)
- RMDM is the cornerstone of the methodology
- Primitives:
 - Domain primitives
 - Associative Relationships

E-R Domain Primitives	Entities	E
	Attributes	A
	One-One Associative Relationship	<i>R</i>
	One-Many Associative Relationship	<u>R</u>
RMD Domain Primitives	Slices	
Access Primitives	Uni-Directional Link	>
	Bi-Directional Link	<i>~~~~</i> >
	Grouping	
	Conditional Index	<u>Р</u>
	Conditional Guided Tour	_ P →
	Conditional Indexed Guided tour	₽ ►

11-5 RMM (1.0.0)

- Entities might consist of a large number of attributes
- Slices show a subset
- They are meant to resemble pizza slices

Navigation

Supported by six access structures:

- Unidirectional Link
- Bidirectional Link
- Grouping
- Conditional Index
- Conditional Guided Tour
- Conditional Indexed Guided Tour

11-7 RMM (1.0.0)

Example of a RMDM Diagram

11-8 RMM (1.0.0)

Conceptual Design

11-9 RMM (1.0.0)

RMM Design Methodology

RMM: Step S1 E-R Design

- First step, to represent the information domain
- Using an Entity-Relationship diagram
- Study of the relevant entities and relationships of the application domain
- Sometimes this diagram might already be available
- Make links between objects explicit: relationships

E-R Diagram

11-12 RMM (1.0.0)

- Determines how the information in the chosen entities will be presented to the readers and how they might access it
- In the worst case, all the attributes of an object are presented to the reader at the same time
- For example: 'faculty' slices:
 - General information
 - Biography
 - Research area

11–13 RMM (1.0.0)

11-14 RMM (1.0.0)

Slice Design Phase

- Each entity is divided into slices
- There is always a default slice
- Links show the navigation between slices
- These links are called structural links
 - They connect information pieces within the same entity
 - Represented with continuous lines
- Other links are called associative relationships:
 - Connect different entities
 - Represented with Dashed lines

11-15 RMM (1.0.0)

Slice Design Phase...

- The output of this phase is an **enriched E-R**+ diagram
 - E-R diagram +
 - Slice design diagram for each entity
- Four main considerations:
 - Dividing entities into slices
 - Choosing one slice as the head of the entity
 - Interconnecting slices
 - Labeling these links
- Remember: a slice represents a *whole* to the user

11-16 RMM (1.0.0)

- Choosing the head of the slice requires analysis of the domain
- The links reflect the need to connect more specialized slices to more general ones
- Choosing the labels for the link is important (they become anchors)

S3: Navigational Design

- We design paths that enable hypertext navigation
- Each relation in the E-R diagram is analyzed:
 - If the relation is decided to be relevant then it is replaced by a one of the RMDM access structures
 - All navigational paths should be specified in generic terms i.e. properties of the entities and the relationships: conditional indices, conditional guided tours, coniditional indexed guided tours.

Navigational Design ...

11–19 RMM (1.0.0)

High Level Access Structures

- Next in the design is to create high level access structures by grouping items of interest
- Access structures enter, by default, an entity via its head slice
- At the end of the navigational design, the E-R+ diagram has been transformed to a RMDM diagram

Step S4: Conversion Protocol Design

• Uses a set of conversion rules to transform each element of the RMDM diagram into an object in the target platform

- S5 User Interface Design: Involves the creation of the screen layouts of the diagram created in S3
- S6 Run time behaviour design: are nodes static or dynamically generated?
- S7 Construction and testing