
58	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

Open source is transforming the
way software is built. The availabil-
ity of artifacts (source files, compo-
nents, libraries, and so on) from open
source systems promotes reuse. Any
software developer can quickly search
the Internet and find a component to
reuse, download it, and incorporate it
into the software that he or she is cre-
ating. Because such reuse could vio-
late the license under which the open
source code has been distributed, the
organization’s legal department should

carefully monitor it. In such a context,
a major challenge is to know what open
source is being used (if any) and how.

Open source license compliance
(OSLC) is the process of ensuring that
an organization satisfies the licensing
requirements of the open source soft-
ware it uses, whether for its internal use
or as a product (or part of one) that it
develops and redistributes.

Building on our previous work,1–5
here we introduce readers to OSLC
challenges and provide guidelines on

how organizations can control and
mitigate the legal risks associated with
open source reuse.

OSLC Challenges
Ideally, an organization should prepare
itself and its developers for the chal-
lenges of open source reuse.6 Manuel
Sojer and Joachim Henkel conducted
a survey of several hundred developers
and discovered that reusing open source
is now common,7 but software develop-
ers frequently don’t understand the as-
sociated legal risks, and their organiza-
tions lack policies to guide them.8 Sojer
and Henkel also investigated whether
different countries’ legal systems (such
as common law or civil law) or spoken
languages (potentially affecting license
understanding), affected code reuse;
however, their results didn’t provide
any support to that conjecture.

Here, we’ll define open source soft-
ware as software that’s licensed under
an open source license. An open source
license makes source code available for
creating derivative works based on it.
(According to the US Copyright Act, a
derivative work is a work “based upon
one or more pre-existing works.”) The
Open Source Initiative (OSI) has a set
of characteristics that an open source
license must fulfill to be OSI approved
(see http://osi.org). To date, OSI has ap-
proved 69 different licenses, such as
the GNU General Public License ver-
sion 2 (GPLv2) and version 3 (GPLv3),
the Apache Public License version 2.0
(APLv2), and the MIT license.

An open source license is a vehicle
for the licensor to grant certain rights
to the licensee that would otherwise
be forbidden, such as the right to make
copies and the right to create derivative
works. In exchange for these rights, the
licensee should abide by the require-
ments that such a license imposes.

Every open source license can be

A Method for Open
Source License
Compliance of
Java Applications
Daniel M. German, University of Victoria

Massimiliano Di Penta, University of Sannio

// Kenen is a semiautomatic approach to open source

license compliance for Java components that uses

component identification, provenance discovery, license

identification, and licensing requirements analysis. //

FOCUS: Software Engineering for Compliance

	 May/June 2012 | IEEE Software � 59

modeled as a set of grants. A grant is
a right given by the copyright owner.
Each grant requires the licensee to sat-
isfy one or more requirements; the re-
quirements can be modeled as a con-
junction of predicates.1 For example,
APLv1.1 requires the licensee to in-
clude the component’s copyright notice
along with the binaries that incorpo-
rate the software. In this case, the grant
is allowing the creation and distribu-
tion of binaries based on the software,
and the requirement is the inclusion of
the copyright notice. If the copyright
notice is included with the binaries, the
condition is satisfied, and the licensee
receives the grant.

Open source licenses vary substan-
tially in the constraints they impose.
Any licensee must satisfy all the require-
ments for each license of the software it
reuses. If the licensor can’t satisfy them,
then it can’t reuse the open source in
question. For example, a licensor that

wants to distribute software under only
a proprietary license will not be able to
link to an open source library licensed
under the GPLv3. The GPLv3 requires,
as a condition for the grant of creat-
ing derivative works, that the deriva-
tive work can only be licensed under
the GPLv3; it’s not possible to satisfy
this condition and, at the same time, li-
cense the software under a proprietary
license (see the “Solving the License In-
compatibility Problem” sidebar).

Reuse Methods
There are two main methods of open
source reuse: copy-and-paste and com-
ponent-based. Copy-and-paste meth-
ods involve copying sections of source
code from an open source system.
In component-based reuse, the open
source system is used as a black box,
becoming a module of the system being
created. Component-based reuse can
take different forms, such as libraries

that are linked into binaries, execut-
ables required for the functioning of
the system (such as language interpret-
ers), and code generators (including
compilers).

Legal Risks
Many open source licenses (such as the
GPL family, which includes the GPLv2
and the GPLv3) distinguish the require-
ments they impose on a grant to create
a derivative work and those they impose
on other grants, such as making copies
of the component and further distribut-
ing them. We leave to the courts the le-
gal question of whether a software sys-
tem is a derivative work of a component
it reuses, and anybody who incorpo-
rates open source into commercial soft-
ware should seek legal advice.

Even copying a few lines of code can
be a legal risk. In one copy-and-paste
case, a US Court of Appeals declared
that just a few lines of copied code

Solving the License
Incompatibility Problem

The proliferation of open source licenses, each with its own set
of requirements and grants, frequently makes it impossible—
in theory—to combine components with two or more different
licenses. This problem is referred as the license incompatibility
problem. Licensor and licensees have created ingenious solutions
to this problem.1

For example, Mozilla code—originally licensed under
MPLv1.1—couldn’t be combined with code under the GPLv2 (the
two licenses are incompatible). To solve this problem the Mozilla
Foundation chose to relicense Mozilla under a “Disjunctive Licens-
ing”—that is, under three licenses (the GPLv2, LGPLv2.1, and
MPLv1.1)—and let the licensee choose one of them.

Another example is the “exception,” where the licensor adds an
addendum to a license (such as the GPL) that permits certain uses
that would otherwise be forbidden. One instance of this is Oracle’s
FOSS License Exception to the GPLv2, stating that code licensed

under any of 26 licenses (listed in the exception) can link to a
GPLv2-licensed library to which it applies. This allows code under
the PHP license, which isn’t compatible with the GPLv2, to link to
MySQL connect libraries. When Oracle (then Sun Microsystems)
was considering licensing Java under the GPLv2, concerns arose
that any Java program could be considered a derivative work of
the Java SDK. To address this issue, the Free Software Foundation
created the Classpath exception; when a Java library is licensed
under the GPLv2 with the Classpath exception, the program that
links to it is considered a derivative work of the library, but such a
program can be distributed under any license (open source or not).

Reference
	 1.	 D.M. German and A.E. Hassan, “License Integration Patterns: Addressing

License Mismatches in Component-Based Development,” Proc. 31st Int’l
Conf. Software Eng. (ICSE 09), IEEE CS, 2009, pp. 188–198.

60 IEEE SoftwarE | www.computEr.org/SoftwarE

FOCUS: Software engineering for ComplianCe

could be a copyright infringement if the
code is of “suffi cient importance.”9

The legal risks of component-based
reuse are harder to evaluate. The
method in which the component is inte-
grated has a big impact in determining
if a system is a derivative work of the
component. It’s always useful to con-
tact the author and ask for his or her
opinion on whether the intended use
would create a derivative work (even if
this opinion is not legally binding). For
example, the Free Software Founda-
tion (FSF, the creator of the GPL fam-
ily of licenses) says that when a system
links to a GPL-licensed library (either
dynamically or statically), the result is
a derivative work of the library. How-
ever, if the component executes in its
own execution space (via a fork or sys.
exec), then the system is not a deriva-
tive work. (This allows Apple’s Mac
OS, a product under a proprietary li-
cense, to include FSF open source tools
such as gcc and emacs that are licensed
under the GPLv3.) Linus Torvalds, the
main author of the Linux kernel, has

clarifi ed that any program that uses the
kernel via system calls is not its deriva-
tive work.

Reuse Policies
Today, all organizations should retain
legal advice and create policies regard-
ing the reuse of open source. Policymak-
ers should address potential issues by

• appointing an open source offi cer
who oversees the use of open source
within the organization;

• stating under what circumstances
open source reuse is allowed (copy-
and-paste or component-based
methods);

• training staff regarding open source
licensing and reuse;

• creating a repository of preapproved
components that can be reused;

• defi ning procedures for the approval
of new open source components;

• defi ning procedures to document
and verify how open source is being
incorporated into a product;

• establishing an approval process

that clears the release of a product
that reuses open source; and

• defi ning procedures to guarantee
that the organization satisfi es the
requirements imposed by the reused
component in products (such as
making its source code available for
download or including copyright
notices in its documentation) at
both the time of its release and after
(and for as long as it is necessary to
fulfi ll these requirements).

Figure 1 illustrates how different
open source and commercial products,
with many different licenses, can be in-
volved in creating a proprietary system.
Open source can be part of its source
code, or it can be involved in its build-
ing and running.

kenen: an OsLc
process for Java
Today, any organization producing
software should verify that it satisfi es
the license constraints of the open
source it uses. Kenen is a semiautomatic
process to help organizations in their
OSLC for Java development (see Figure
2). It comprises four main stages.

Creation of a Repository
of Preapproved Components
To ease the development of systems
that fulfi ll licensing compliance, it’s
a good policy to have a repository of
preapproved reusable components (in-
cluding components that are developed
in-house, that are licensed by the organi-
zation from third parties via contracts,
and that are open source). An organiza-
tion needs to bootstrap such a reposi-
tory by scanning its current systems to
identify any open source it’s using.

Provenance Discovery
What open source is the organization
using? This question can be explored
at both the source code and the binary
levels. In previous work,5 we created
a provenance analysis tool called Joa,

Execution

Generated code
(MIT)

Makefiles
(GPL)

Other documents:
multimedia, text

(Creative Commons)

Compilers
(GPL)

Virtual
machine

(GPL+ClassPath Exception)

Dynamic
libraries
(Apache)

External
executables

(GPL)

Source �les
developed by
the company

Open source
components

(Apache)

Build
process

Libraries
(LGPL)

Binaries

Open source
components

(MIT)

figUre 1. A proprietary software system might require many different open source systems

with many different open source licenses.

 may/JunE 2012 | IEEE SoftwarE 61

which can fi nd matches of both source
and byte code Java fi les in a large cor-
pus of candidates. Joa compares a
class’s type signature with those of
potential candidates and suggests po-
tential matches. It can fi nd matches as
long as the type signatures and their
methods haven’t diverged too much;
otherwise, clone-detection tools will
work instead. If Joa fi nds no match of
a given source (.java) or binary (.class)
fi le against this repository, then we as-
sume that the product contains non-
approved source code. In this case, it’s
useful to run Joa against a universal
repository. Unfortunately, maintaining
a universal repository is very diffi cult.
For our experiments, we used Maven2
(http://mirrors.ibiblio.org/pub/mirrors/
maven2) as a corpus of open source.
Maven2 is a repository of source code
and binaries that has been created to
support Maven, a dependency manager
for Java applications.

Joa fi nds the best match for a Java
Archive fi le (JAR) based on two met-
rics: the similarity index and the

inclusion index. The similarity index
is the number of classes that share the
same signature between the JAR fi le
(the subject) and the candidate JAR
(among those in the corpus), divided by
the size of the union of class signatures
of the subject and the candidate. The
inclusion index of a subject and a can-
didate is the number of classes in the
subject that are also in the candidate,
divided by the size of the candidate.
The similarity index can help us iden-
tify almost identical copies; the inclu-
sion index can help us identify when a
given JAR is a proper subset of another.

License Identifi cation
For any open source component that
we reuse, we should identify its license.
We should do this for the specifi c ver-
sion matched (the one copied to be re-
used), because its license might change
over time (for example, the current
version of the component might have
a different license from the one cop-
ied). Identifying the license of an open
source component isn’t always trivial.4

One of the main challenges is that open
source components don’t have a uni-
form way to document their licenses.
Some efforts, such as the Software
Package Data Exchange (see the “Soft-
ware Package Data Exchange” side-
bar) are attempting to standardize this
information and to share it between
organizations. To identify the license
of the fi les that compose a given Java
component, we use Ninka, a pattern-
matching-based tool that we developed
in previous research.3

Licensing Requirements Analysis
The licensing requirements analysis is
a manual process that should be per-
formed by somebody with both soft-
ware and legal expertise. How complex
and time consuming this analysis is will
depend on the number of open source
components involved and their licens-
ing requirements.

The licensing requirements analy-
sis answers two questions: fi rst, is the
overall license of the system compat-
ible with the licenses of each of the

Creation of
corpus of

pre-approved
components

Internally
developed
software

Provenance
discovery

Li
ce

ns
e

an
al

ys
is

Open source
component

Open source
component

Open source
component Licensing

requirements

License
identification

...

License
identification

...

License
identification

Creation of a repository of
pre-approved components

Provenance
discovery

License Identification Licensing
requirements

analysis

Company-
developed binary or

source code
to analyze

Code from
the open

source

Code from
the open

source

Code from
the open

source
......

Corpus of
approved

components

figUre 2. An overview of Kenen. Before the analysis is done, Kenen creates a repository of preapproved components, identi� es the license

of each of them, and analyzes these licenses to determine if the requirements are legally compliant.

62	 IEEE Software | www.computer.org/software

FOCUS: Software Engineering for Compliance

components it uses? This requires eval-
uation of whether the overall system’s
license contradicts any of the license re-
quirements of each component it uses.
If there is even one contradiction, the
system can’t be licensed to others.

The second question is whether all
the requirements stated in those licenses
are fulfilled. The automated analysis
of any possible license, with the aim
of identifying its requirements and
how they are triggered, is a nontrivial
problem. Licenses are written in legal
terms and are intended to be interpreted
by lawyers, not computers. To further
complicate the problem, requirements
might be triggered (or not) based on
the jurisdiction of the licensor, the
licensee, or both. Ideally, a lawyer who
specializes in this area of law should
interpret every license, and he or she
would determine its requirements and
the conditions that it imposes on the
organization wanting to reuse it.

A Case Study
To illustrate the effectiveness of Kenen,
we analyzed the provenance and licens-
ing constraints of a software system (an
editor of music files, which we will not
name for confidentiality reasons), for
which we only had access to its binaries.

Implementing Kenen
We wanted to know if Kenen could
verify whether an application used
open source, and if so, whether it sat-
isfied its licensing constraints. As men-
tioned earlier, an organization should
have a corpus of preapproved compo-
nents. In our study, we used Maven2
instead. As of July 2011, it included
523,930 archives (.tar, .java, .zip, and
so on) totaling 275 Gbytes. Using Joa,
we extracted the signatures of every
.class and .java file (27,851,789 files).
A one-time preprocessing analysis of
the repository created a database of
signatures. This step took approxi-
mately 325 hours on a typical desktop
computer.

The application was composed of
57 different JAR files; Joa identified
the source of 27 as present in Maven2.
(Joa took few seconds to run for each
JAR in a typical laptop computer with
a solid state drive.) Of the remaining
30, not a single class was present in
Maven2. We presume that the orga-
nization authored some of these JARs
and that some open source isn’t avail-
able in Maven2. It’s hard to build a
universal repository that contains every
version of every open source repository
artifact ever released.

For those JARs identified as being in
Maven2, 16 had a similarity index of
1 (perfect matches). For the remaining
nine, the median similarity was 0.72.

With only one exception, the base
name of each subject JAR file (with-
out version) matched the name of the
best match (saxpath.jar matched sax-
path-1.0-FCS.jar in Maven2); 60 out
of 95 classes matched to izpack-unin-
staller-1.0.0.0.jar (its best match). These
facts give us confidence that our analy-
sis was accurate. Table 1 shows some
examples of the JARs in the application
and their best matches.

Once we had the JARs’ correspond-
ing source code, we identified their li-
censes (some of which are summarized
in Table 1). Identifying the licenses
of each product depends on whether
Ninka can identify the license. Ninka
automatically identified 20 JARs’ li-
censes. For the other seven, we had
to manually analyze the files’ license
statements and the component’s doc-
umentation. (This process took ap-
proximately four hours. In general,
the duration of this process will vary
according to factors such as the com-
ponent’s size and how well its license is
documented.)

Using this information, we per-
formed a license analysis. We deter-
mined that none of the component’s
licenses were incompatible with a pro-
prietary license, but some of them re-
quired listing the copyright owners in
“the documentation and/or other ma-
terials provided with the distribution.”
The analyzed system’s license satisfied
this condition by including within its
distributed files a directory called “li-
censes,” which listed the license (and
therefore the copyright owners) of
some components. The list of copyright
owners of one of the components, how-
ever, was not present, even though it
was required (xpp3_minb-1.1.4c.jar).
We contacted the organization that
authors the application, which quickly
acknowledged the problem and will

Software Package
Data Exchange
The Software Package Data Exchange (SPDX) is a standard format for the description of
the license of a software system. Its goal is to document, in a well-defined format, the
license of a system and its files and their licenses. Many organizations and individuals
have participated in its definition, including HP, Canonical, Motorola, Black Duck Soft-
ware, Texas Instruments, and Daniel German, one of the authors of this article. SPDX
has also started to standardize the names of the most common open source licenses.
Version 1.0 of SPDX was released in August 2011. The long-term goal of SPDX is to
become a standard for the exchange of bills of materials that accompany any given
system, indicating all its components and every one of their licenses. This will simplify
licensing compliance analysis across the supply chain. For more information, visit www.
spdx.org.

 may/JunE 2012 | IEEE SoftwarE 63

address it in the next version of the
product. This analysis took approxi-
mately three hours.

t oday, developers can easily fi nd
and reuse open source compo-
nents, even without manage-

ment knowledge or authorization. To
mitigate any potential legal risk, orga-
nizations should directly address OSLC
issues by creating policies that clearly
indicate if open source is allowed and
the procedures to follow for its ap-
proval. A process such as Kenen is an
important tool in verifying that these
policies are being observed.

references
 1. D.M. German and A.E. Hassan, “License

Integration Patterns: Addressing License Mis-
matches in Component-Based Development,”
Proc. 31st Int’l Conf. Software Eng. (ICSE
09), IEEE CS, 2009, pp. 188–198.

 2. M. Di Penta et al., “An Exploratory Study of
the Evolution of Software Licensing,” Proc.
32rd Int’l Conf. Software Eng. (ICSE 10),
IEEE CS, 2010, pp. 145–154.

 3. D.M. German, Y. Manabe, and K. Inoue, “A
Sentence-Matching Method for Automatic
License Identifi cation of Source Code Files,”
Proc. IEEE/ACM Int’l Conf. Automated
Software Eng. (ASE 10), ACM, 2010, pp.
437–446.

 4. D.M. German, M. Di Penta, and J. Davis,
“Understanding and Auditing the Licensing of
Open Source Software Distributions,” Proc.

18th Int’l Conf. Program Comprehension
(ICPC 10), IEEE CS, 2010, pp. 84–93.

 5. J. Davies et al., “Software Bertillonage: Find-
ing the Provenance of an Entity,” Proc. Work-
ing Conf. Mining Software Repositories (MSR
11), ACM, 2011, pp. 183–192.

 6. C. Ruffi n and C. Ebert, “Using Open Source
Software in Product Development: A Primer,”
IEEE Software, vol. 21, no. 1, 2004, pp.
82–86.

 7. M. Sojer and J. Henkel, “Code Reuse in Open
Source Software Development: Quantita-
tive Evidence, Drivers, and Impediments,”
J.Association for Information Systems, vol.
11, no. 12, 2010, article 2.

 8. M. Sojer and J. Henkel, “License Risks from

Ad Hoc Reuse of Code from the Internet,”
Comm. ACM, Dec. 2011, pp. 74–81.

 9. N.J. Mertzel, “Copying 0.03 Percent of
Software Code Base Not ‘De Minimis,’”
J. Intellectual Property Law & Practice,
vol. 9, no. 3, 2008, pp. 547–548.

DanieL m. german is associate professor of computer science
at the University of Victoria, Canada. His research interests include
open source legal compliance, open source software engineering, and
software evolution. German has a PhD in computer science from the
University of Waterloo, Canada. He is a member of the Legal Network of
the Free Software Foundation Europe. Contact him at dmg@uvic.ca.

massimiLianO Di penta is associate professor at the University of
Sannio, Italy. His research interests include software maintenance and
evolution, reverse engineering, empirical software engineering, search-
based software engineering, and service-centric software engineering.
Di Penta has a PhD in computer engineering from the University of
Sannio, Italy. Contact him at dipenta@unisannio.it.a

B
o

U
t
 t

H
e

 a
U

t
H

o
r

S

ta
B

l
e

 1 Provenance and licensing analysis of some of the JARs
found in the proprietary application.

JAR Size (no. of classes) Best match Size Similarity License

commons-io-1.4.jar 72 commons-io-1.4.jar 72 1.000 APLv2

saxpath.jar 15 saxpath-1.0-FCS.jar 15 1.000 *APLv1.1-type

jaxen-1.1.1.jar 197 jaxen-1.1.1.jar 197 1.000 BSD-3

swingx-ws.jar 134 swingx-ws-1.0.jar 134 1.000 LGPLv2.1

xpp3_min-1.1.4c.jar 3 xpp3_minb-1.1.4c.jar 3 1.000 APLv1.1-type

jide-oss.jar 414 jide-oss-2.4.8.jar 409 0.927 Free commercial use

swingx.jar 426 swingx-0.9.2.jar 422 0.785 LGPLv2.1

*APLv1.1-type refers to licenses that are similar, but not identical to the Apache Public License v1.1.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

